

Methodological Background

"An individual who is censored at c should be representative of all those subjects with the same values of the explanatory variable who survive to c" (Cox and Oakes, 1984)

- Independence assumption: attrition and event are independent of each other (e.g. time at survey = non-informative censoring)
- Attrition through in- and out-migration in Health and Demographic Surveillance System (HDSS)
- Informative censoring if migration related to respondents' health (selective left- and right-censoring)

Ordinary survival framework

- \Box T is the variable of interest, called the time to event or lifetime, with unknown distribution function F
- C is the random right-censoring time with arbitrary d.f. G
- T and C are assumed to be mutually independent

Controls for observed and unobserved heterogeneity in migration

21 Mars 2013

Deme

21 Mars 201

- Relative migration propensity
 - = log (relative cumulative hazard function)
- Computed on known migration determinants
- Unobserved heterogeneity
 - Captured through (standardized) deviance residuals
 (= observed versus predicted probabilities)
 - Computed on unknown migration determinants

Two-Stage Equation Model: control for selection bias due to observed heterogeneity

 Selection (out-migration) Cox model equation (C₁ = informative censoring = out-migration):

$$\lambda_{C_{-1}|Z(t)}(t|z(t)) = \lambda_{C_{-1}0}(t)exp^{z(t)\beta}$$

Main (mortality) equation:

$$\lambda_{T|x(t)}(t|x(t)) = \lambda_{T0}(t)exp^{x(t)\beta + \Lambda_{-1}(t)\alpha}$$

where log(relative cumulative hazard function) represents out-migration propensity by time *t*: $(\sum_{i=1}^{N} \lambda_{C_{i}+1})$

$$\Lambda_{-1}(t) = \log\left\{\frac{\sum_{j=1}^{N} \lambda_{C_{-1}|Z(t)}(t|z(t)) . I(C_{-1j} \le t)}{\sum_{j=1}^{N} \lambda_{C_{-1}}(t) . I(C_{-1j} \le t)}\right\}$$

To note: Z = X + V, with V a vector or instrumental variables (i.e. that explain the selection but not the event, e.g. data collection or calendar effects)

Two-Stage Equation Model:

Martingale residuals from selection (out-migration) model:

$$M_{-1,i} = \delta_{-1,i} - \exp\left(\mathbf{z}_{i}(t)\hat{\beta}_{-1}\right) \cdot \Lambda_{-1,base}\left(t_{i}\right)$$
$$-\infty < M_{-1,i} \le 1$$

Deviance residuals (Therneau et al. 1990) from selection model:

$$D_{-1,i} = sign(M_{-1,i}) \left[-2 \{ M_{-1,i} + \delta_{-1,i} \log (\mathfrak{B}_{-1,i} - M_{-1,i}) \} \right]$$
$$-\infty < D_{-1,i} < +\infty$$

Negative residuals = lower observed chance to out-migrate than predicted

Positive residuals = higher observed chance to out-migrate than predicted

Final Two-Stage Equation Model

- Determinants of mortality
- □ Controlling for:
 - Observed heterogeneity in out-migration risk
 - Unobserved heterogeneity in out-migration risk
- □ Controlling for:
 - Observed heterogeneity in in-migration risk
 Unobserved heterogeneity in in-migration risk

$$y(t) = x(t)\beta + \Lambda_{-1}(t)\alpha_{-1} + \Lambda_{+1}(t)\alpha_{+1} + D_{-1}(t)\gamma_{-1} + D_{+1}(t)\gamma_{+1}$$

Hypotheses:

expected selection effect

	Non-violent death	Violent death
Observables, in-migration	Positive (HR<1)	Nil (HR=1)
Unobservables, in-migration	Negative (HR>1)	Nil (HR=1)
Observables out-migration	Positive (HR<1)	Nil (HR=1)
Unobservables out-migration	Negative (HR>1)	Nil (HR=1)

Nairobi HDSS data

- 2004 to mid-2010 data (6 ½ years)
- Almost 100,000 lived in the HDSS (aged 15-79)
- □ 1927 died in the HDSS in 2004-2010 (aged 15-79)
- High circular migration of adults (15+) in slums:
 More than 26% annual in- and out-migration rate
- □ Eliminate first 6 months after in-migration
 - 4-month minimum duration criteria for residence
 - No risk of dying/out-migrating during those first 4 months

21 Mars 2013

21 Mars 2013

Dema

Covariates in Nairobi HDSS Data

Time-invariant covariates
sex, ethnicity, slum area, education
Time-varying covariates (TVC)
duration of residence, year, post-election (dec-2007) period
TVC specific to migration model (=instruments)
notice of demolition (eviction from the slums)
field-workers (quality of data collection)

Cause of death data

- Non-violent deaths (66%) include chronic diseases
 - diabetes, HIV/TB, cardio-vascular, undetermined but not violent...
- Violent deaths (17%)
 - murders (e.g. political), suicide, accidents...
- Unknown causes of death (17%)

Unusually high female mortality in Nairobi slums

Nairobi HDSS:

- □ 45q15 (15-60)
 - □ 334‰ [Cl: 312 356] for males
 - 375‰ [Cl: 342 410] for females
- E15 (15-80)
 - 15+49.3=64.3 year old
 [Cl: 63.5 65.1] for males
 - 15+48.6=63.6 year old
 [Cl: 62.6 64.7] for females

WHO for Kenya:

- 45q15 (15-60)
 - 358‰ for males

21 Mars 2013

Dema

21 Mars 2013

Dema

- 282‰ for females
- 🗆 E15
 - 15+49.2=64.2 year old for males
 - 15+53.0=68.0 year old for females

21 Mars 2013

Dema

Regression results: observed heterogeneity in out-migration

Out-migr. propensity	Male	Female
Non-violent	0.95	0.80***
death	(0.80 - 1.12)	(0.69 - 0.93)
Violent	0.95	0.94
death	(0.81 - 1.12)	(0.61 - 1.46)

- Lower risk of non-violent death in HDSS associated with high out-migration propensity for females
- ⇒ Non-violent mortality in HDSS would have been higher for females without out-migration

21 Mars 2013

Regression results: observed heterogeneity in in-migration

ln-migr. propensity	Male	Female
Non-violent	0.96	1.19***
death	(0.89 - 1.05)	(1.08 - 1.31)
Violent	0.92**	1.01
death	(0.86 - 0.99)	(0.75 - 1.36)

- Unexpected higher risk of non-violent death in HDSS associated with high inmigration propensity for females
- ⇒ Non-violent mortality in HDSS would have been **lower** for females without in-migration
- Unexpected lower risk of violent death in HDSS associated with high inmigration propensity for males

21 Mars 2013

Dema

Regression results:

unobserved heterogeneity in out-migration

Deviance residuals	Male	Female
Non-violent	1.06***	1.07***
death	(1.02 - 1.10)	(1.04 - 1.11)
Violent	1.01	1.08
death	(0.95 - 1.07)	(0.94 - 1.24)

- Higher risk to die in HDSS if higher-than-predicted risk to out-migrate
- ⇒ Conditional on not having done a migration yet

 Effect for both males and females

Regression results: unobserved heterogeneity in in-migration

Deviance residuals	Male	Female	
Non-violent	1.43***	1.62***	
death	(1.29 - 1.58)	(1.48 - 1.77)	
Violent	1.59***	1.23	
death	(1.39 - 1.82)	(0.80 - 1.89)	

- Higher risk to die in HDSS if higher-than-predicted risk to in-migrate
- Effect for both males and females
- Unexpected effect on violent death for males

Hypotheses: evidence of selection effect for females

	Non-violent death	Violent death
Observables in-migration	Negative	Nil
Unobservables in-migration	Negative	Nil
Observables out-migration	Positive	Nil
Unobservables out-migration	Negative	Nil

Too few cases of violent deaths for females

Hypotheses: evidence of selection effect for males

13 mars 2013

	Non-violent death	Violent death
Observables in-migration	Nil	Positive
Unobservables in-migration	Negative	Negative
Observables out-migration	Nil	Nil
Unobservables out-migration	Negative	Nil

High migration contribution (Chi2: F=44.1%; M=26.5%)

21 Mars 2013

- Confirmed negative selection by unknown determinants of migration :
 - Evidence that they are health-related (migration motivated by bad health, or associated with risk taking, violence or exposure to health risks)
 - Unobserved determinants are more important than observed ones to explain mortality in HDSS
 - Also confirmed for violent death for males, thus identifying a sub-population of men in the slums who take up (illegal) activities or adopt (risky) behaviour that expose them to violent deaths

21 Mars 2013

- Unexpectedly positive for violent deaths
- Negative selection by in-migration for females
 - Combined with positive selection by out-migration = high risks of dying of non-violent death
 - Explain rather high female-to-male mortality in Nairobi slums (≠ Kenya)

Merci pour votre aimable attention!