Changes in proximate determinants of fertility in sub-Saharan Africa

Kazuyo Machiyama, Andy Sloggett, John Cleland
London School of Hygiene & Tropical Medicine

Quality and comparability of demographic data in sub-Saharan Africa
INED/Pôle Suds
20 March 2012
Background

• Several sub-Saharan African countries (SSA) seem to have slowed down the pace of fertility decline, but the findings are inconclusive. (Casterline 2001, Bongaarts 2008, Garenne 2008, Schoumaker 2009, Shapiro 2010, Sneeringer 2009)

• One reason for the disagreement may be due to the lack of consideration to the DHS data quality. Age displacement of children and omission may have affected recent fertility trends. (Schoumaker 2008, Machiyama 2009)
Observed TFR from DHS reports

Total fertility rates, 17 SSA, 1986-2011
TFR from DHS reports – no decline?

Total fertility rates, 17 SSA, 1986-2011

Incl. TFR from preliminary reports
Potential non-sampling errors

- Digit preference in women’s age
- Age displacement of women
- Age displacement of children
- Incomplete age reporting (women & children)
- Different composition of women
- Use of different sampling frame
- Omission of births

Birth

- Nov 1997
- Jan 1998
- Feb 1998
- Jul 2002
- Aug 2003

Interviewed

Ghana

Cut-off Month for child health Qs
Data quality problems on fertility trends - unadjusted

Ghana

Year

Partial TFR (15-39)

DHS1989

DHS1993

DHS1998

DHS2003

DHS2008

Cut-off year
Data quality problems on fertility trends - adjusted

Ghana

Partial TFR (15-39)
TFR (15-39): Loess-based approach

Changes in pace of fertility decline between 1985-95 and 1995-2005

Average annual rate of decline (1995-2005) vs. Average annual rate of decline (1985-95)

Few studies examined the mechanisms of the deceleration. Fertility changes should be supported by behavioural changes of fertility, i.e. the proximate determinants of fertility. Few applied the proximate determinants model to SSA. (Stover 1998, Kiersten et al. 2011)

An examination of changes in proximate determinants provide an opportunity to assess what extent observed/fitted TFR estimates are consistent with the behavioural changes of fertility.
Research objectives

1. To assess changes in the proximate determinants in 17 sub-Saharan African countries over the past two decades

2. To explore what extent changes of the proximate determinants support the estimated fertility decline by using the modified Bongaarts framework
Methods

Data

65 DHS surveys in 17 SSA countries with 3 or more surveys undertaken (1986-2010)

Benin, Burkina Faso, Cameroon, Ghana, Kenya, Madagascar, Malawi, Mali, Namibia, Niger, Nigeria, Rwanda, Senegal, Tanzania, Uganda, Zambia and Zimbabwe
Methods: Bongaarts proximate determinants framework (1978, 1982)

Fertility-inhibiting effect of:

- Postpartum infecundability \((C_i)\)
- Contraception and induced abortion \((C_c, C_a)\)
- Marriage \((C_m)\)

Total Fecundity Rate (TF)

Total fertility rate (TFR)

\[TFR = TF \times C_m \times C_i \times C_a \times C_c \]
Characteristics of African fertility

The original Bongaarts model is not applicable to SSA (e.g. Bongaarts 1983, Caldwell 1992)

• Appreciable premarital sex and childbearing (Garenne et al. 2006)
• Lower frequency of sex within marriage (Caraël 1995, Brown 2000)
• Polygyny
• High infertility (Frank 1983, Larsen, 1999)
• High reliance on traditional family planning methods (Johnson-Hanks 2002, Che et al. 2004)
Methods

Stover’s revision (1998)

Potential Fertility (PF)
- Abortion (Ca)
- Infertility (Cf)
- Postpartum infecundability (Ci)
- Contraception (Cu)
- Sexually active (Cx)

Total Fertility Rates (TFR)

\[\text{TFR} = \text{PF} \times \text{Cx} \times \text{Ci} \times \text{Ca} \times \text{Cu} \times \text{Cf} \]

Results: Index of sexually active
Recent sex by co-residence

Proportions of married women (15-39) who had sex in the last 28 days by co-residential status, 17 SSA
Recent sex by marital status

Proportions of women (15-39) who had sex in the last 28 days by marital status.
Index of postpartum infecundability

![Graph showing index of postpartum infecundability across different countries and DHS rounds.](image-url)
Index of infertility

[Bar chart showing the index of infertility across different countries and DHS rounds.]
Contraceptive prevalence
Average effect of contraceptive

DHS1, DHS2, DHS3, DHS4, DHS5

Benin, Burkina Faso, Cameroon, Ghana, Kenya, Madagascar, Malawi, Mali, Namibia, Niger, Nigeria, Rwanda, Senegal, Tanzania, Uganda, Zambia, Zimbabwe
Index of contraception
Projected vs Loess TFRs

Cameroon

- 1991
- 1998
- 2004

Senegal

- 1986
- 1993
- 1997
- 2005

Projected TFR

Loess TFR
Projected vs Loess TFRs

Ghana

- 1988: Projected TFR 6, Loess TFR 5
- 1993: Projected TFR 6, Loess TFR 5
- 1998: Projected TFR 6, Loess TFR 5
- 2003: Projected TFR 6, Loess TFR 5
- 2008: Projected TFR 6, Loess TFR 5

Uganda

- 1995: Projected TFR 8, Loess TFR 6
- 2000: Projected TFR 8, Loess TFR 6
- 2006: Projected TFR 8, Loess TFR 6

Madagascar

- 1992: Projected TFR 8, Loess TFR 6
- 1997: Projected TFR 8, Loess TFR 6
- 2003: Projected TFR 8, Loess TFR 6
- 2008: Projected TFR 8, Loess TFR 6
Projected vs Loess TFRs

- **Benin**
 - 1996: Projected 6, Loess 6
 - 2001: Projected 6, Loess 6
 - 2006: Projected 6, Loess 6

- **Nigeria**
 - 1990: Projected 6, Loess 6
 - 1999: Projected 6, Loess 6
 - 2003: Projected 6, Loess 6
 - 2008: Projected 6, Loess 6

- **Tanzania**
 - 1992: Projected 6, Loess 6
 - 1996: Projected 6, Loess 6
 - 1999: Projected 6, Loess 6
 - 2004: Projected 6, Loess 6
 - 2010: Projected 6, Loess 6

- **Zambia**
 - 1992: Projected 6, Loess 6
 - 1996: Projected 6, Loess 6
 - 2001: Projected 6, Loess 6
 - 2007: Projected 6, Loess 6
Projected vs Loess TFRs

Kenya

Malawi

Rwanda

Projected TFR

loess TFR
Projected vs Loess TFRs

Namibia

Zimbabwe

- Projected TFR
- Loess TFR

Years:
Summary: comparison (between 1985-95 and 1995-2005)

<table>
<thead>
<tr>
<th>Trends of loess estimates</th>
<th>Trends of projected TFR based on the proximate determinants framework</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase</td>
</tr>
<tr>
<td>Deceleration</td>
<td></td>
</tr>
<tr>
<td>Acceleration/ Constant decline</td>
<td></td>
</tr>
<tr>
<td>Pre-transition</td>
<td></td>
</tr>
</tbody>
</table>
Limitations

• The proximate determinants model is not intended to provide accurate estimates.

• There may be (more) biases and errors in proximate determinants data.

• Because only the data at the time of the surveys were available, there are 3-5 point estimates on proximate determinants in each country to assess the trends. Description of the TFR trends has to rely on the slope between the two point estimates. The slope may be affected by different levels of data quality across the surveys.
Discussion

• Overall, the TFR estimates based on the proximate determinants framework were consistent with the loess estimations. Specifically, the deceleration was supported by the changes in proximate determinants.

• The changes in each indicators significantly varied across the countries.

• The discrepancies in TFRs estimates between the projected and loess TFRs might be resulted from:
 (a) high contraceptive discontinuation rates
 (b) higher incidence of abortion
 (c) low or high proportion of unmarried women among all sexually active women (e.g. Namibia)
Discussion

• Deceleration is likely to be resulted from:
 (a) stagnation of increase in contraceptive prevalence
 (b) decrease in duration of postpartum abstinence (and amenorrhea)
 (c) reduced sterility

• The proximate determinants model is useful to validate the observed/fitted TFRs. The revised model seems to reasonably capture the changes.
Thank you!

Contact: Kazuyo Machiyama
Kazuyo.machiyama@lshtm.ac.uk