

Outline

20 March 2012

Conviction: longitudinal data process model influences the quality of the analysis

- □ Breaking the myths on EHA
- Process for descriptive analysis
 - Conventional approach
 - EHA approach
- Process for regression analysis
 - Conventional approach
 - EHA approach

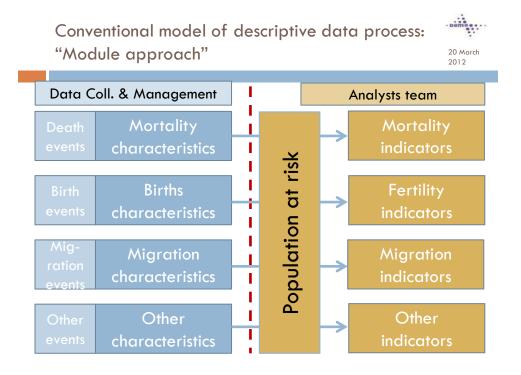
Some myths around Event History Analysis (EHA)

2012

- □ EHA is essentially about:
 - Lifetime data
 - Survey data
 - Right-censored data
 - Multivariate analysis
- □ EHA is inappropriate or a waste of time for:
 - Short-time data
 - Register or census data
 - Left-censored data
 - Basic, descriptive or aggregate data

(Terminology used in this presentation: Event history analysis = biographical data analysis)

20 March 2012


Event History Analysis (EHA)

EHA should not be:	EHA should be
 starting from after data cleaning 	 starting from collection and
	management

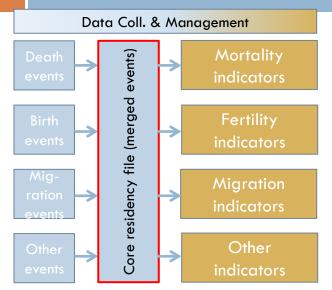
- ... separated trom cross-sectional analysis
- □ ... used only at senior (PhD) level
- □ ... left to analysts only

∋:

- rom data d data
- □ ... forming a continuum with cross-sectional analysis
- □ ... part of basic training (Master's level)
- □ ... integrated into data processing

Conventional model of descriptive data process: "Module approach" in words

- Numerator is aggregated on fixed time intervals
- Denominator is aggregated on fixed time intervals:
 - Either mid-year/period population
 - Or mean population (multiplied by number of years in the interval to approximate person-years at risk)
- Rates are obtained by dividing numerator by denominator
- Assumption of equal distribution over time interval for both numerator and denominator
 - Necessary when cohort data is used to compute calendar time (period) indicators, or vice versa


Conventional model of descriptive data process: "Module approach" pitfalls

- Computing the number of events (numerator) usually not a problem
- □ Risk of computing denominator wrongly:
 - Assumption of equal distribution is wrong in many instances
 - Person-years at risk depends on inclusion and exclusion criteria defined using other files
- Probability-to-rate conversion (or vice versa) heavily depends on equal distribution assumption

	Core individ	dual level :	resic	lency file	()	20 M 2012
	Individual_ID	Household_ID	Event	DoB	DateEvent	
A	G0010010010001 G0010010010001	G00100100100 G00100100100	ENU EOB	17 Nov 1947 17 Nov 1947	21 Aug 2002 31 Dec 2010	
В	G0010010010002 G0010010010002	G00100100100 G00100100100	ENU OMG	1 Jul 1976 1 Jul 1976	21 Aug 2002 1 Jul 2007	
С	G0010010010003 G0010010010003 G0010010010003 G0010010010003 G0010010010003 G0010010010003	G00100100100 G00203000104 G00203000104 G00100100111	ENU EXT ENT OMG IMG DTH	23 Aug 1985 23 Aug 1985 23 Aug 1985 23 Aug 1985 23 Aug 1985 23 Aug 1985 23 Aug 1985	21 Aug 2002 1 Jul 2007 2 Jul 2007 10 Nov 2007 30 Mar 2008 15 Oct 2008	
D	G0010010010004 G0010010010004 G0010010010004 G0010010010004	G00100100100 G00100100100 G00203000104 G00203000104	ENU EXT ENT OMG	1 Jul 1988 1 Jul 1988 1 Jul 1988 1 Jul 1988 1 Jul 1988	21 Aug 2002 1 Jul 2007 2 Jul 2007 10 May 2008	
E	G0010010010005 G0010010010005	G00100100100 G00100100100	BTH EOB	1 Jul 2005 1 Jul 2005	1 Jul 2005 31 Dec 2010	
F	G0010010010006 G0010010010006		IMG OMG	1 Jul 1983 1 Jul 1983	31 Aug 2007 8 Apr 2008	

EHA model of descriptive data process: Event and date consistency checks

- □ Check non-logical sequence of events such as:
- \Rightarrow BTH after DTH/ENU/IMG...
- ⇒ Succession of same event
- ⇒ First event not ENU, IMG or BTH
- ⇒ Last event not OMG, DTH or end of observation (EOB)
- ⇒ Internal moves: EXT not followed by ENT
- Check dates:
- ⇒ Date of birth, date of last observation...
- ⇒ Non-logical sequence often originate in errors of dates
- ⇒ Need at least one day between BTH and DTH (born alive)

Kintampo HDSS: before corrections

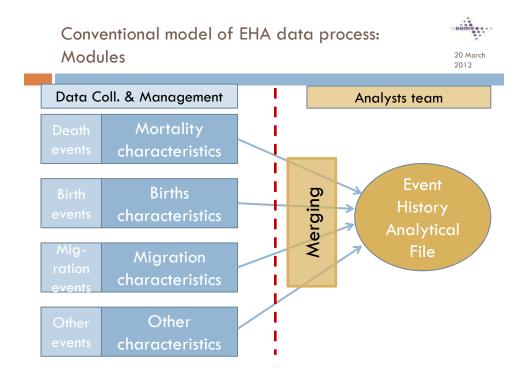
_										
event	ENU	BTH	IMG	OMG	EXT	ENT	DTH	CUR	•	Total
ENU	320	0	346	48,569	22,941	34	4,503	49,530	14	126,257
BTH	0	6	28	3,530	3,036	0	1,091	16,335	0	24,026
IMG	5	1	367	26,058	11,452	74	1,025	45,959	11	84,952
OMG	0	0	10,856	306	210	435	6	329	74,853	86,995
EXT	0	0	875	65	538	44,837	2	280	72	46,669
ENT	0	0	362	8,455	8,455	475	563	27,404	161	45,875
DTH	0	0	0	0	0	0	19	1	7,192	7,212
CUR	3	0	0	0	0	1	0	346	139,978	140,328
•	0	1	2	12	16	10	3	42	149	235
Total	328	8	12,836	86,995	46,648	45,866	7,212	140,226	222,430	562,549
	Percentage of records with inconsistencies: 2.26									

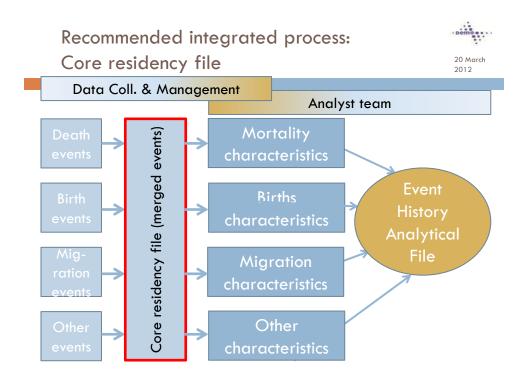
Kintampo HDSS: description of corrections

20 March 2012

of wrong IDs of individuals concerned but old IDs still in database database Inconsistent dates Arose due to correction of wrong dates which led to inconsistencies with other dates previously entered concerning an individual's residency 317 40.3% Corrections made on database Duplicates Arose mainly due to problems with merging data tables 188 27.7% Removed by data correction program					
of wrong IDs of individuals concerned but old IDs still in database database Inconsistent dates Arose due to correction of wrong dates which led to inconsistencies with other dates previously entered concerning an individual's residency 317 40.3% Corrections made on database Duplicates Arose mainly due to problems with merging data tables 188 27.7% Removed by data correcti program Hanging cases Migrations not reconciled 462 16.7% Removed from current analysis by data correctio program	Error type	Description	Number	Percentage	Solution
dates of wrong dates which led to inconsistencies with other dates previously entered concerning an individual's residency database Duplicates Arose mainly due to problems with merging data tables 188 27.7% Removed by data correctio program Hanging cases Migrations not reconciled 462 16.7% Removed from current analysis by data correctio program	Wrong IDs	of wrong IDs of individuals concerned but	179	15.6%	
problems with merging data tables program Hanging cases Migrations not reconciled 462 16.7% Removed from current analysis by data correctio program		of wrong dates which led to inconsistencies with other dates previously entered concerning an	317	40.3%	
analysis by data correctio program	Duplicates	problems with merging	188	27.7%	Removed by data correction program
Total 1146 100.0%	Hanging cases	Migrations not reconciled	462	16.7%	analysis by data correction
	Total		1146	100.0%	-

EHA model of descriptive data process: "Core residency file approach" in words




- Denominator is computed from exposure using all events defining inclusion (birth, enumeration, inmigration) and exclusion (death, last observation, out-migration) at the individual level
- Numerator is also computed at individual level
- Rates are obtained by dividing numerator by denominator
- Assumption of equal distribution is not needed
 Rates can be computed for any time interval

EHA model of descriptive data process: "Core residency file approach" advantages

- Basic demographic rates can be computed directly from the core residency file
 - Computer capacities allow large datasets handling
 - Regular and reliable production of indicators made easier
- □ No risk of computing denominator wrongly:
 - No assumption of equal distribution
 - Built-in person-years at risk computation based on inclusion and exclusion criteria
- Probability-to-rate conversion (or vice versa) is not necessary

"Core residency file approach": advantages for determinants (regression) analysis 20 March 2012
Core residency file is:
Controlled at data management level
Basic demographic rates and regression analysis are consistent
No need for (differently endowed) analysts to merge files, with risk of producing different results
Core residency file can easily be expanded on demand:
Adding event attributes (e.g. cause of death, child rank, migration destination and origin...)
Adding other status events that do not modify exposure in the reference population

- (e.g. changes in employment, education, marriage, etc.) ⇒ Flexibility
- EHA-oriented data management training needed at Masters level (data manager, research assistant...)

Many thanks for your kind attention

20 March 2012